
Which Engineering Major Should I Choose?

Stacy K. Firth, PhD

Engineering is Multidisciplinary

- Artificial Kidney Project Project Research Team:
- •Chemical Engineers
- •Biomedical Engineers
- •Electrical Engineers Production:
- Mechanical Engineers
- •Manufacturing Engineers
- •Chemical Engineers
- •Material Scientists

What – The job we do, the career we have.

How – The skills and education we gain to get there.

Why – Our purpose, what we love, what gets us up in the morning.

How

What

The Golden Circle – Simon Sinek

How to Decide?

Focus on the following two objectives.

Where you want to go:

•Careers, contributions, interests.

•Opportunities: Department of Labor's

Bureau of Labor Statistics and the National Science Foundation

How you are going to get there:Course of study, internship experience.

College of Engineering | The University of Utah

EERING

Courses Common to Engineering Majors

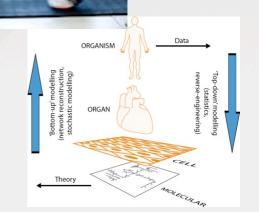
Course	<u>BioE</u>	<u>Chem E</u>	CVEE	ECE	<u>MSE</u>	ME	<u>CS</u>
Math 1310 Eng Calc I	×	×	Х	X	×	×	Х
Math 1320 Eng Calc II	×	×	Х	Х	X	X	Х
Math 2210 Calc III or Math 3140 PDE	×	×	Х	Х	X	X	Х
Math 2250 Diff Eq/Lin Alg	×	×	Х	Х	X	X	Х
Phys 2210 Pysics for Sci and Eng I	×	×	Х	×	×	X	Х
Phys 2220 Pysics for Sci and Eng II	×	×	Х	×	×	X	
Chem 1210 General Chemistry I	×	×	Х		×	X	
Chem 1215 General Chemistry Lab I	×	×	Х		×	X	
Chem 1220 General Chemistry II	×	×	Х		×		
Chem 1225 General Chemistry Lab II	×	×	Х		×		
Chem 2310 Organic Chemistry I	×	×			×		
Chem 2315 Organic Chemistry Lab I	×	×					
Biol 2020 Cell Biology or Biol 1210 Princ of							
Bio	×			X			

Communication, Ethics, Teamwork, Design, Projects

Bioengineering

Modeling Biomechanics Biomaterials

- Bioinstrumentation
- Biomechanics


Technology that interfaces with biological systems

Computational Methods Design

- Biomaterials
- Clinical
 Engineering

Biosignals Physiology Biotransport

- Rehabilitation Eng.
- Systems Physiology

Chemical Engineering

Thermodynamics Numerical Methods

- Pharmaceuticals
- Healthcare
- Polymers

Transformation of raw materials to finished products

Process Engineering Fluid Mechanics

- Petrochemicals
- Food Processing
- Environmental health and safety

Heat Transfer Mass Transfer Reaction Engineering

- Specialty Chemicals
- Microelectronics
- Energy

Civil and Environmental Engineering

Statics Thermodynamics StructuralConstruction

Design, construction, and maintenance of infrastructure and the environment

Strength of Materials Structural Load & Analysis

EnvironmentalTransportation

Civil Engineering Materials Hydraulics

- Geotechnical
- Water
 Resources



Electrical and Computer Engineering

Electromagnetics and Transmission Computer Programming

• Power

Communication

Harness electrons to do useful work

Digital Systems Signal Processing

- Image
 Processing
- Circuit Design

Electrical Circuits Semiconductors

Alternative
 Energy

Energy Storage

Materials Science and Engineering

Polymers Ceramics CeramicsPolymers

Permeate Feed Air DC (-) Product

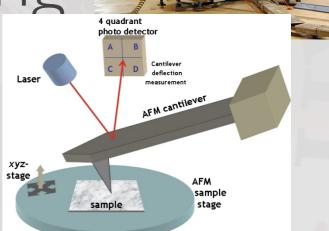
Development of materials with desirable properties

Materials Processing Thermodynamics

OrganicsMetals

Mechanical Properties Kinetics of Solid-State

Semiconductors

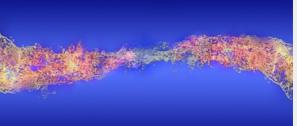

Composites

Mechanical Engineering

Mechanical Design, CAD Statics and Strengths of Matls.

- Robotics
- Aerospace
- Micro/nanoscale engineering

Systems that utilize power to accomplish a task that involves forces and movement


Manufacturing Thermodynamics Heat Transfer Biomechanics
Ergonomics and safety

Design of Mechanical Elements Fluid Mechanics

• Design and manufacturing

• Fluid mechanics

School of Computing

Object Oriented Programming Algorithms Computer Engineer
System Architect

Devices and instructions to calculate a set of outputs from a set of inputs

Programming Structures Organization Systems Programmer

 (Applications, Games, Robotics, Web)

Scientific Computing Animation Administrator (Database, Network)

Questions?